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Abstract 

Added mass is the virtual additional mass of an object when it is accelerated relative to the surrounding fluid. The 

present paper documents both numerical and analytical methods for computing the added mass coefficients of 

submerged vehicles. A new numerical method is described to calculate the linear coefficients in axial and lateral 

directions. The method is firstly validated by comparing its results with the known results for a sphere. Numerical 

results show that the added mass coefficients are independent from accelerations values. In addition, an analytical 

method which is called equivalent ellipsoid is explained to approximate the added mass coefficients. In this approach, 

various components of vehicle are separately replaced by ellipsoids whose dimensions are optimally determined by 

measuring the moments of inertia. Comparison of the obtained results with available and published experimental reports 

of DARPA SUBOFF submarine shows the simplicity and accuracy of the numerical and even analytical approaches. 
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Introduction 

In recent years, underwater vehicles have been used in various fields such as military, oceanographic, exploration, etc. 

In order to investigate the dynamic behavior of these vehicles, their motion equations should be solved. The external 

force in these equations consists of the hydrostatic, hydrodynamic, thrust, and control surfaces forces. Unsteady motion 

of submerged vehicles in water changes the kinetic energy of the surrounding fluid. The acting force due to this 

phenomenon is called added mass force. Added mass force is the fluid weight added to the object; thus, the second law 

of Newton can be written as ( )aF m m a  .  

Traditionally, potential flow theory, Semi-empirical and experimental methods have been used to predict added mass 

coefficients. Perrault [1] estimated the total components of added mass matrix for an AUV by an analytical approach. 

Lin and Liao [2] calculated the added mass coefficients of a complicated underwater vehicle using fast multiple 

boundary element method (FMBEM), and concluded that their method was computationally more efficient than the 

traditional BEM. Extending potential flow and strip theories as far as possible, Watt [3] introduced an analytical method 

in which various components of submersibles were replaced by ellipsoids. Watt showed that the overall forces in an 

ideal fluid were linear in term of the kinetic energy of flow field; therefore, the total added mass force of a submersible 

could be obtained from linear summation of each component force.  

Nowadays, CFD methods are more utilized to the hydrodynamic applications due to development of computer sciences. 

Using Reynolds Averaged Navier-Stoks (RANS) techniques, simulation of the planar mechanism motion (PMM) has 

been widely applied to compute the added mass coefficients of underwater vehicles. For instance, Zhang [4] simulated 

the PMM test numerically and obtained the corresponding hydrodynamic coefficients to evaluate the maneuverability of 

a submersible during design stages. Phillips [5] used numerical simulations to replicate the horizontal PMM tests for an 

AUV designed at the National Oceanography Center of Southampton. In another work, focusing on the hydrodynamic 

performance, Jinxin [6] simulated PMM tests and oblique sailing by a commercial software. He also investigated the 

effect of appendages on the motion performance of AUV. Hochbaum [7] simulated PMM tests numerically for the 

NSTL ferry and compared his results by experimental tests. Lee [8] calculated the added mass coefficients for an 

unmanned underwater vehicle by simulation of the vertical plannar mechanis motion, and compared his results with 

experimental method.  

It’s obvious that the PMM simulations are the customary procedure in calculating added mass coefficients, but 

frequency and amplitude of oscillations can influence the the output results. In order to avoid these effects, in this paper, 

an alternative numerical method is explained to calculate the linear added mass coefficients. An analytical approach is 

also introduced to determine the same coefficients. Disregarding the viscous effects and time dependent of flow nature 

causes these methods have been used to estimate the hydrodynamic derivatives.  

 

Motion equations and description of model 

Motion of an underwater vehicle is discribed by definition of two coordinate systems. Displacements are defined in the 

inertial frame coincided to the earth frame, while the motion equations are described in the body-fix frame.  
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[u v w p q r] are the linear and angular velocities and  [X Y Z K M N] are the acted forces and moments. The motion 

equations for linear motion in the horizontal and vertical plane are simplified to the linear equations defined as: 

: ( - ) ( )

: ( - ) ( - ) ( )

: ( - ) ( ) ( )

u u prop

v G r v r

w G q w q

Surge m X u X u U X

Sway m Y v mx Y r Y v Y mU r Y

Heave m Z w mx Z q Z w Z mU q Z









  

    

     

 (1) 

m and CG = [xG,yG,zG] are the mass and gravity center of vehicle. δ and U are the control surface angle and towing 

velocity of the vehicle respectively. Note that,   ̇  
  

  ̇
 ,    

  

  
 are the hydrodynamic derivatives including added 

mass and damping coefficients. For example,   ̇ is the added mass in x direction because of the surge motion. 

In this paper, DARPA SUBOFF is chosen for investigations because its experimental data is available. Geometrical 

parameters of submarine are given in table1. 
 

Table 1: Geometric parameter of SUBOFF 

Total length 4.356 (m) 

maximum diameter 0.508 (m)
 

Volume of displacement 0.718 (m
3
) 

Wetted surface 6.33 (m
2
) 

 

This submarine was designed in the David Taylor research center (DTRC), and various experiments were carried out to 

determine its hydrodynamic coefficients [9].  

 

 
Figure 2: sketch of DARPPA SUBOFF submarine 

 

Numerical procedure 
In order to calculate the added mass of a submerged model, two kinds of motions including constant velocity and 

constant acceleration should be imposed successively. If F1 is the needed force for towing the model with constant 

velocity, this force is evidently equivalent to the drag force. Afterwards, if this model is towed with a constant 

acceleration, the towing force (F2) should overcome the drag force as well as an extra force due to accelerating the 

model and surrounding fluid. Note that, velocities are equivalent together for both stages at the conversion time of 

motion. The difference between F1 and F2 at the conversion time gives the amount of added mass. 

2 1

2 1 ( )        a a

F F
F F m m a m m

a


       (2) 

In Eq.2, m and a are the model fluid mass and acceleration values respectively. ma is the added mass of carried fluid in 

the direction of motion.  

 

Analytical approach 

In this section, an analytical method based on the potential flow theory is to be clarified to compute the diagonal added 

mass coefficients of underwater vehicles. Short descriptions of the main stages to determine the added masses are 

 Aproximating the components of the underwater vehicle as a series of ellipsoids 

 Representing the optimum dimensions of each ellipsoid 

 Calculating the added mass of the replacement ellipsoids separately 

 Linear summation of the calculated added masses 

Figure 1: Coordinate systems and definitions 

Surge: X,u 

Heave: Z,w 
Sway: Y,v 

Roll: K,p 

Yaw: N,r 
 

Pitch: M,q 
 

z y 

Earth 
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Moment of inertia as a mathematical property of geometry can be a good criterion for obtaining the best dimensions of 

the replaced ellipsoids in order to maximize the accuracy of calculations. Because the hull is axisymmetric, it’s 

sufficient to determine two axial and lateral diameters of the replaced ellipsoid using the area moment of inertia. 

Similarly, in appendages case, because an appendage primarily affects forces perpendicular to its planform area, an 

ellipse firstly replaces the planform. The maximum thickness of appendage is considered as the third diameter of 

replaced ellipsoid.  

Now, Consider an ellipsoid totally submerged with the origin at the center of the ellipsoid as: 
2 2 2

2 2 2
1

x y z

a b c
    (3) 

After computing the dimensions, the next step is to determine the added mass coefficients for the ellipsoids. Following 

formula are represented for calculating the linear added mass derivatives. 

 

11uX k m  
22vY k m  

33wZ k m  (4) 

 

Korotkin [10] introduced Lamb's k-factors as: 
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Where, A0, B0, C0 are the constants that describe the relative proportions of the ellipsoid. 
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(6) 

Watt [3] showed that the interference effects between various components had a negligible influence in computing the 

diagonal coefficients. Thus, the total added mass can be written as the linear summation of each component 

contribution. 

11 11 11

22 22 22

33 33 33

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

u hull sail control surfaces

v hull sail control surfaces

w hull sail control surfaces

X K m K m K m

Y K m K m K m

Z K m K m K m







  

  

  

 (7) 

 

Numerical analysis 
The motion of fluid is modeled by RANS equations to determine the flow field variables (u,v,w,p). For an 

incompressible and isothermal flow, these equations are 

 

' '

0

( ) 1
( )

i

i

i j j i ji i

i

j i j j i j

u

x

u u u u uu uP
f

t x x x x x x









     
      

        

 (8) 

The Reynolds stresses (  
   

 ) are additional unknowns appeared by the averaging procedure. Turbulence models relate 

the Reynolds stresses to the averaged flow quantities in order to close the system of governing equations. The K−ε 

model is a common turbulence model for engineering simulations, but it is weak to introduce the location of the 

separation point. An alternative model is Shear Stress Transport (SST). This model synthesizes both k-ω and k-ε model 

to solve the Reynolds stresses near the wall and out of the boundary layer respectively. The finite volume method is 

implemented to solve the unsteady NS equations in all simulations. The advection term and turbulence equations are 

solved numerically using the high-resolution scheme. The convergence limitation is also set at 10
-5

 for all simulations. 

 

Mesh definition 

Unstructured grids are used to generate elements in the entire fluid domain. This kind of grids has a better adaptability 

in complicated geometry. Prism elements are used inside the boundary layer for increasing the number of elements and 

solution accuracy. Thus, it is necessary to estimate the thickness of boundary layer and arrangement of grids layers near 

the wall. Thickness of boundary layer and the first layer for a blunt body with desired y
+
 can be estimated 
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(9) 

(10) 

L is the flow length scale and the Reynolds number is calculated based on this scale. One of the main steps in the CFD 

analysis is checking the sensitivity of solution to the number of elements. Because the viscous parameter affects on the 

size of grids, it is better to investigate the variation of the skin drag coefficient. The grid study is performed in the way 

that the number of elements should be increased until the variations of Cf become negligible. Table2 shows the results 

of a typical grid study in the surge motion of submarine. 

 
Table 2: Typical grid study for the Suboff in surge motion 

 Coarse Medium Fine Fine (1) Fine (2) 

Total element 833864 1106616 1259877 1878225 2534171 

Cf 0.0035 0.0033 0.0031 0.0031 0.0031 

The results of fine, fine (1), and fine (2) grids are identical; therefore, it is computationally appropriate to use fine grid 

for this case. 

  

Numerical simulation 
First, simulation is accomplished for a sphere with radius of 1m to ensure the accuracy of proposed numerical 

procedure. On the other hand, it’s essential to find the correct values of the force at the conversion time of motion, and 

simulation of sphere can help us in making this decision. Figure3 shows the dimensions, grids, and boundary conditions 

for sphere simulation. 

 

Figure 3: Dimensions and boundary condition for sphere simulation 

The boundary conditions consist of time dependent velocity for the inlet, zero static pressure for the outlet, no-slip wall 

for sphere surface, and free slip wall for outer domain wall. Table3 shows the results of grid study for a series of 

refinement grids. 

 
Table 3: Typical grid study for the sphere motion 

Case study Coarse Medium Fine Fine(1) Fine(2) 

Total element 1318553 1618887 2009970 2234049 2729871 

Cf 0.0459 0.0448 0.0441 0.044 0.044 

Here again, the fine grid is computationally more efficient relative to the other grids. Now, the sphere is moved with 

speed of V(t) for five seconds, and the normal acted force is simultaneously monitored as Fig4. 

  

Figure 4: The acted force on the sphere due to velocity 
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As soon as the motion type is changed, the fluid flow through the model cannot accord with the new motion 

immediately. This physical phenomenon called history effect has been observed in the experimental tests [11]. Force 

oscillations that created by history effects of fluid make it difficult to get the correct force at the conversion time of 

motions. For solving this problem, in addition to the first stage, at the t=3.5s (stage 4) velocity is 1.5m/s except that in 

this stage, motion is accelerated without history effect. As a result, the added mass obtained from the first and fourth 

stages must be equivalent to obtained value from the first and second stages. Comparison shows that the force after 

oscillation should be considered as the force of second stage; therefore, the forces after oscillations are the correct 

values for each stage. Table4 shows the computed forces and related added masses for each stage separately. 

 

Table 4: Calculated forces and added masses for sphere 

 FD(N) F2(N)   2 D
a

F
m m

a
g

F
k


   am

C
V

  

Stage1-2 850 2750 2157.1 0.51 

Stage2-3 1100 2950 1990.4 0.48 

Stage3-4 1100 2690 2140.4 0.51 

Stage4-5 700 -2992 1977.1 0.47 

Stage1-4 850 -2820 1940.5 0.46 

The added mass coefficients values obtained from the table 4 are close to the expected result for sphere (C=0.5); 

therefore, present numerical procedure has a good accuracy. Hereby, according to Eq.11, the SUBOFF submarine first 

moves with constant acceleration, and at the end of this stage, it moves with constant velocity. 

0.5 1
   

0.5 1

t t
V

t


 


 (11) 

Other boundary conditions are similar to the sphere case. Note that, this simulation is separately replicated in the x,y,z 

directions for calculating the , ,u v wX Y Z coefficients respectively.  

The obtained forces diagram in x,y,z directions are shown in following figures: 

 

 
Figure 5: Acted force in the surge motion of the Suboff 

 
Figure 6: Acted force in the sway motion of the Suboff 
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Figure 7: Acted force in the heave motion of the Suboff 

 

A cubic fluid domain is established according to the real scale of submarine, and consists of:  

-Surge motion: one model length at up-stream, four model lengths at downstream and outer domain's walls is located 

at the eight-model diameter away from the submarine. 

-Sway and heave motions: three model diameters at up-stream, fifteen model diameters at downstream and outer 

domain walls are located at the twice model length.  

After the initial unstable region in the accelerated motion, the forces are linearly increased, but the scale of the curves 

prevents to see this increment easily. Note that, the oscillations in the surge force are smoother because of the 

streamlined shape of submarine in longitudinal direction. 

 

Analytical calculations 

As it explained, the area moment of inertia is used to obtain two diameters of the hull and appendages. The hull has 

port-starboard symmetry about x-z plane, and top-bottom symmetry about x-y plane; therefore, the hull should be 

replaced by a prolate ellipsoid of revolution (b=c<a). Two diameters of ellipsoid are determined by calculating the area 

moments of segment shown in the figure 8.  

 

 
Figure 8: sheer profile of the hull and  differensial vertical strip 

 

If the local height of the hull is approximated by a 4th degree polynomial 

4 3 2

( ) 0.0156 0.0113 0.0208 0.0273 0.2525xf x x x x     
 

(12) 

Using a diffrensial vertical strip with the height f(x) and width dx, the area moments of inertia at the area center of the 

hull are expressed as: 

3 3

(x) ( )

2 3

(x) ( )

1
0.5       

3 8

0.5
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f dx I ab
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



 

 




 (13) 

There are two equations in two unknowns; therefore, a,b can be calculated and consequently c=b. Similar procedure is 

implemented for the appendages. Because of the rectangular shape of the sail, the dimensions of the replacement ellipse 
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Figure 9: Drawing of the control surface and sail  
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are simply calculated by equaling the area moments of inertia for both geometries.  

However, when an area is composed of many parts, it is convenient to tabulate the results for each part. Here, the 

control surface area is composed of the rectangle (1) and the triangles (2) and (3). The area moments of inertia about the 

centroidal axes with origin at C=(8.03,9.14) are calculated as follow: 

Table 5: mathematical properties of the control surface 

Part A (cm
2
) dx (cm) dy (cm) Adx

2 
Ady

2
 xI

(cm
4
) yI

(cm
4
) 

(1) 155.04 0.43 2.76 28.66 1181.03 1344.2 2985 

(2) 65.28 1.63 4.6 173.44 1381.32 167.7 1336.9 

(3) 20.4 8.5 1.06 1473.9 22.92 117.9 18.1 

∑    1676 2585.27 1629.8 4340 

d is the distance from centroidal axis of each part to the axis about which the moment of inertia of the entire section is 

to be computed. Thus, the area moments of inertia for the control surface about centroidal x0- and y0-axes become 

0

0

2

2

x x x

y y y

I I Ad

I I Ad

 

 

 

 
 

(14) 

Now, the calculated area moment of inertia similarly should be equivalent to its replacement ellipse. Note that, 

maximum thickness is the third diameter for the sail and control surfaces. The obtained diameters are specified in table6. 

Table 6: Dimension of replaced ellipsoids for various components of submarine  

 hull sail rudder stern 

a (cm) 218 21 10.6 10.6 

b (cm) 27 6.7 3 7.3 

c (cm) 27 11.7 7.3 3 

 
Figure 10: Replacement of submarine with a series of ellipsoids 

 

 

Results and discussions 

In the table7, the computed added mass coefficients by numerical simulation and analytical approach are compared with 

DTRC experimental reports [9] and published PMM results [12]. The added mass coefficients become dimensionless by 

dividing to 
 

 
   . 

 

 Table 7: Comparison of the linear added mass coefficients 

 Present numerical work Present analytical work Exp reports PMM result 

  ̇
  0.6×10

-3
 0.4×10

-3
 - - 

  ̇
  0.017 0.014 0.016 0.019 

  ̇
  0.016 0.0135 0.014 0.018 

 

According to the table7, the results of present numerical method are close to the experimental and PMM results; 

nevertheless, the time of computations is less due to simplicity of simulations. Numerical representing of sinusoidal 

motions complicates the PMM simulations, and subsequently increases the time of calculations. 

 

Conclusions 

In this paper, using the unsteady RANS simulation, the linear added mass coefficients for a submarine were calculated 

numerically in axial and lateral directions. In order to verify the method, its results were compared with the expected 

results for a sphere. The numerical results agreed well with the available experimental results of the submarine. 

However, this method was simple and low-cost in comparison to the PMM simulation for calculating the corresponding 

coefficients. In addition, an analytical approach was used to determine the diagonal added mass coefficients of 

mentioned submarine. It was demonstrated that the moments of inertia was a good criterion for choosing the best 

dimensions of the replacement ellipsoids. Note that, both methods are exclusively applied in calculating the coefficients 

in deep water. 
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List of Symbols 

CP
 pressure coefficient 

f
 

body force 

i,j
 

displacement directions index 

iu  fluctuating velocity 

Greek symbols  

ρ Density 
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