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A B S T R A C T   

This paper proposes a dimensional optimization procedure for a laboratory scale two-body point absorber wave 
energy converter (WEC) using the design of experiment (DoE) methodology. Response surface methodology 
(RSM) is utilized to estimate a second order polynomial function correlating the average absorbed power, as the 
objective function, to five geometric parameters. Optimum values of parameters correspond to the peak of the 
surface fitted to the absorbed powers calculated for different sets of input parameters selected by the Box- 
Behnken design (BBD). The sensitivity of the objective function with respect to each parameter is investi-
gated. The WEC is assumed to operate under regular waves in a specified range of frequency, 0.5–1 Hz. The 
amplitude and complex-conjugate controls are applied to keep the power take-off (PTO) system in optimum 
conditions. ANSYS-AQWA is used to calculate hydrodynamic parameters of the WEC required to solve the 
equations governing the absorbed power.   

1. Introduction 

Harvesting energy from sustainable resources seems to be an answer 
to the increasing demand for energy, with a minimum ecological foot-
print. Energy that is stored in oceanic waves – and released in every 
cycle – is one of the unlimited sustainable resources that have been in 
the focus of attention in recent years. In recent decades, a wide variety of 
technologies to harvest wave energy has been proposed, studied, and in 
some cases tested at full scale in real ocean conditions. 

The devices that are used to generate electricity using ocean waves, 
generally known as wave energy converters (WECs), are classified into 
different categories based on their configuration and operating princi-
ple. According to Drew et al. (2009) and Falcão (2010), three main 
categories are oscillating water column (OWC), overtopping, and 
oscillating body. Among the oscillating body types, point absorbers, 
which were developed for the offshore environment, are rather attrac-
tive due to their simplicity and reliability compared to other designs. 
The horizontal dimensions of point absorber systems (PAs) are, 
compared to the wave length, very small. PAs consist of buoys that 
oscillate with incident waves in the heave or surge directions. Based on 

the number of oscillating bodies, PAs are grouped into single- or 
two-body point absorbers. 

Two single-body point absorber WECs (1B-PA WEC) with different 
shapes of buoys are studied in Pastor and Liu (2014). By comparing a 
variety of diameters and drafts (the wet height of the buoy), the optimal 
draft, and diameter of the buoy that maximize the power absorption are 
determined. It is concluded that increasing the diameter of the buoy 
leads to an increase in the absorbed power, while the shape does not 
have a considerable effect. 

One way to increase the output power of a WEC is to ensure that the 
natural frequency of the WEC is close to the frequency of the ocean 
waves. In other words, the WEC should operate near its resonance 
condition. The frequency range of the ocean waves depends on the sea 
states. The lowest frequency for wind-induced gravity waves is esti-
mated to be approximately 0.03 Hz, and the highest frequency is 
approximately 13.6 Hz (Massel, 2007). Therefore, the diameter and the 
mass of the buoys should be large enough to ensure that the frequency of 
the WEC body falls into this range. Incorporating a submerged body, in 
order to improve resonance conditions, increases the degrees of freedom 
and, therefore, reduces the resonating frequency and increases the 
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absorbed power at lower frequencies (Engström et al., 2011; Liang and 
Zuo, 2017). Due to this fact, there is still ongoing research concerning 
two-body Point Absorber WECs (2B-PA WECs). This kind of WECs, in 
general, has three main parts: (i) the floating buoy, which is in touch and 
oscillates with the incident wave, (ii) the submerged body, which is 
immersed in the water and moves with respect to the floating body, and 
(iii) the power take-off system (PTO), which is placed between the two 
bodies and is responsible for converting the absorbed wave energy into 
electricity. The floating buoy and the submerged body are free to move 
relative to each other, in heave direction. This relative motion is con-
verted to electricity through the PTO. 

Increasing the efficiency of WECs is still the focus of ongoing 
research (Golbaz et al., 2021). Unpredictable wave conditions and the 
multidisciplinary nature of the structure of WECs are still main chal-
lenges in the development of WECs (Falcão, 2010; Falnes and Kurnia-
wan, 2020; Al Shami et al., 2019a,b). Efforts made so far to design and 
improve WECs can be divided into four main lines of research: (i) to 
optimize the geometry and the size of the buoys in order to maximize the 
power absorption (Mccabe, 2013; Koh et al., 2015; Kurniawan and 
Moan, 2012; Goggins and Finnegan, 2014); (ii) to find the PTO proper 
parameters and a suitable structure to optimize the performance of the 
energy conversion (López et al., 2017; Gaspar et al., 2018; Boren et al., 
2016), (iii) to develop control algorithms to improve the output power 
generation and predict the wave characteristics (Hong et al., 2014; Park 
et al., 2016; Murai and Sakamoto, 2021), and (iv) to design and optimize 
the layout of WEC farm (Sharp and Dupont, 2018; Murai et al., 2020). 
These lines of research are interdependent, and any effort in one line is 
dependent on the parameters and variables of the others. This compli-
cates the optimization process. For example, the size and topology of the 
WEC’s body affect the hydrodynamic coefficients and, thus, also the 
coefficients of the PTO and the resonance frequency. 

Power absorption for two buoys of different sizes, with and without 
the presence of a submerged body, is studied in (Bozzi et al., 2013). The 
study reveals that the smaller floating buoy with a submerged body 
harvests 25% more power than the bigger floating buoy without a 
submerged body. Amiri et al. (2016) investigated the effects of wave 
characteristics (height and period) and the device parameters (diameter, 
draft, form, and PTO damping coefficient) on the efficiency of the energy 
conversion. They conclude that a coaxial-cylinder floating buoy shows a 
better performance than spherical, flat cylinder, or conical buoys. 

Beatty et al. (2015) and Beatty et al. (2019) provide experimental 
and numerical comparisons of two typical designs of 2B-PA with two 
different submerged bodies: (i) Powerbuoy, developed by Ocean Power 
Technology (OPT) in the USA (Ocean Power Technologies, 2021) and 
(ii) Wavebob, developed in Ireland (Weber et al., 2009). For each design, 
hydrodynamic coefficients and the absorbed power are obtained. They 
conclude that the submerged body of Wavebob has a much higher nat-
ural frequency than Powerbuoy’s submerged body – due to the combi-
nation of low buoyancy stiffness and high added mass of the damper 
plate of Powerbuoy. In terms of power absorption, mainly due to the 
very large added mass of the damper plate, Powerbuoy shows peak 
power absorption at much lower frequencies than Wavebob. 

Adding a tuned inertia mass (TIM) significantly increases the energy 
absorption and broadens the effective frequency bandwidth of a novel 
point absorber WEC (Haraguchi and Asai, 2020). Yang et al. (2021) 
present an inertia self-tuning phase control strategy which can optimize 
the efficiency of power absorption of a multi-body WEC by modifying 
the natural frequency of WEC and matching it with the incident wave 
frequency. 

For a single-body WEC, Wen et al. (2018) consider the objective 
function to include the maximum power absorption, bandwidth, and 
resonance frequency. The design of experiments (DoE) is used to opti-
mize the draft, radius, and angle of a truncated conical WEC. They 
conclude that an increase in any of the three parameters decreases the 
resonance frequency, and increases the absorbed power. Also, an in-
crease in the draft and/or the radius leads to a decrease in bandwidth. 

Drawing on the Taguchi method, Al Shami et al. (2019) capture the 
maximum power of a WEC operating in the Australian water regions, 
based on a parametric study on the performance of a 2B-PA WEC. 
Summarizing, they suggest the best parameter combinations to achieve 
maximum output power, best resonance frequency, and optimal fre-
quency bandwidth. 

Falnes (1999) develops motion equations of a 2B-PA by considering 
the PTO as a spring-damper system. By obtaining the optimal PTO pa-
rameters, the author estimates the maximum absorbed power. Two 
optimal and sub-optimal PTO designs are proposed for a 2B-PA in (Liang 
and Zuo, 2017), and a case study is conducted to evaluate the influence 
of the submerged body on the absorbed power of a two-body system, in 
both optimal and sub-optimal designs under regular and irregular wave 
excitations. Li et al. (2020) enhance the performance of a rotational PTO 
by proposing mechanical motion rectifiers (MMR). 

The performance of a heaving coaxial-cylinder wave energy con-
verter is optimized through the actively controlled adjustment of the 
damping and stiffness using a linear frequency domain model (Jin et al., 
2019). The optimization process leads to an increase in the frequency 
bandwidth and a better “capture width ratio”. The effects of water 
depth, mooring stiffness, and the dimensions of a WEC on the capture 
width ratio are studied as well. A variable-geometry wave energy con-
verter, presented in (Zou and Abdelkhalik, 2020), employs multiple 
controllable panels and a gas chamber to allow the buoy to change its 
shape in response to changing wave conditions. In similar studies to 
design controllable PAs, in the case of condition control, many re-
searches focus on latching (Babarit and Clément, 2006; Wu et al., 2018), 
de-clutching (Babarit et al., 2009; Zhang et al., 2014) and model pre-
dictive control (Li and Belmont, 2014; Son and Yeung, 2017; Jama et al., 
2018) to keep the buoys in the same phase with the incident. 

(Murai et al., 2021) present a numerical method to derive optimal 
control force parameters in order to maximize power absorption of a 
multi PA-WEC. They consider several factors such as hydrodynamic 
radiation and diffraction interactions and power loss in circuits to 
investigate different array arrangement and control force parameters. 
Their results reveal that optimizing array arrangement and control force 
parameters increase the efficiency of the power absorption by 15% and 
5%, respectively. 

The current paper reports the latest achievements of a project on the 
design and fabrication of a 2B-PA WEC. It presents a method for 
obtaining the optimal dimensions of the WEC, as well as the optimal 
parameters of the PTO, subjected to physical constraints such as wave 
specifications, laboratory limits such as the size of the wave tank, and 
fabrication costs. In the present study, a scaled-down model is optimized 
and tested in a wave tank. Using the dimensional analysis, i.e. Froude 
similarity in this case, the results can be generalized for models of any 
scales. Table 1 compares several studies performed with the aim of 
optimization of point absorber WECs. 

Basically, the main configuration used is similar to Powerbuoy 
PB150. It operates in the period wave range of 5–12 s. The laboratory- 
scaled model is tested in a wave tank under regular waves. The test 
frequency range is 0.5–1 Hz, following the Froude similarity (Sheng 
et al., 2014). In this phase, the aim is to specify the buoys’ dimensions in 
order to absorb the maximum power in the determined wave frequency 
range. The unknown parameters are the diameter and draft of the 
floating buoy, the diameter and thickness of the submerged body, and 
the depth of the WEC body. First, considering the dimensions of the 
wave tank, the feasible range of each unknown parameter is specified. 
Then, by employing the DoE method, several models, with dimensions 
within the feasible ranges, are selected for the simulations. 

Using the boundary element method (BEM), hydrodynamic co-
efficients of each model are calculated using ANSYS-AQWA (ANSYS Inc., 
2017). Simultaneously, by implementing amplitude control and 
complex-conjugate control methods (Falnes and Kurniawan, 2020) in 
motion equations, the PTO parameters are optimized. After determining 
the absorbed power of each model, response surface methodology (RSM) 
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(Khuri and Mukhopadhyay, 2010) is used to define the absorbed power 
in terms of the aforementioned parameters, and to determine the 
optimal value of each dimension. 

In Section 2 of this paper, the equation of motion for a 2B-PA is 
derived and optimal parameters of PTO and the output power are ob-
tained. Then, in Section 3, DoE and RSM are employed to calculate the 
optimum dimensions of the PA considering the practical constraints. 
Section 4 focuses on the description of the numerical simulations that 
are performed to calculate the optimum power absorption. Section 6 
concludes the paper. 

2. Modeling 

To provide a mathematical model of the WEC, the interactions be-
tween the sea waves, moving body, and PTO system should be consid-
ered. This requires the study of the dynamics and hydrodynamics of the 
system. Fig. 1 shows a WEC that interacts with ocean waves. As shown, 
the WEC tends to move and rotate in three directions. However, it is 
constrained to oscillate only in the heave direction. The equation of 
motion for this system, known as the Cummins equation (Babarit et al., 
2012), is: 

(m+A)ẍ(t)=FHS(t)+ FVis(t)+FRad(t)+Fe(t) + FPTO(t) (1)  

in which the left-hand side describes the acceleration of the WEC body 
accounting for its mass (m) and the added mass (A), which represents the 
accelerated mass of the water surrounding the WEC body. The right- 
hand side includes the forces acting on the PA:  

− Hydrostatic force (FHS),  

− Viscous damping force (FVis),  
− Radiation damping force (FRad),  
− Wave excitation force (Fe),  
− PTO Force, (FPTO). 

To simplify the approach, 2B-PA WEC can be modeled as a 2-DoF 
mass-spring-damper system. Fig. 2 represents this model. An axisym-
metric conical floating buoy is placed on the water surface and attached 
to a cylindrical submerged body through a PTO. The PTO is also 
modeled as a mass-spring-damper system (mPTO, the mass of PTO, con-
tributes to the floating and submerged masses). A common approach to 
determine hydrodynamic forces is to use the linear wave theory. This 
theory assumes that waves are the sum of incident, radiated and dif-
fracted components (Hudspeth, 2006; Stoker, 2011). 

Eqs. (2) and (3) represent the system of equations of motion of 2B-PA 
WEC. To derive these equations, it is assumed that movement of the 
floating buoy does not affect the hydrodynamics coefficients of the 
submerged body, and vice versa. 

(m1 +A1 + r ⋅mPTO)ẍ1(t) + (B1 + bvis1)ẋ1(t)+Ks1x1(t)+CPTO(ẋ1(t)
− ẋ2(t)) +KPTO(x1(t) − x2(t)) = fe1 (t)

(2)  

(m2 +A2 +(1 − r)mPTO)ẍ2(t)+ (B2 + bvis2)ẋ2(t)+Ks2x2(t) +CPTO(ẋ2(t)
− ẋ1(t)) +KPTO(x2(t) − x1(t)) = fe2 (t)

(3) 

Table 1 
Comparing optimization processes used for WECs.   

Shadman et al. (2018) Wen et al. (2018) Al Shami et al. (2019) Present work 

Type of WEC Single-body PA Single-body PA Two-body PA Two-body PA 
Input parameters Buoy diameter 

Buoy draft 
Buoy diameter 
Buoy draft 
Buoy cone angle 

Floating buoy diameter 
Floating buoy draft 
Submerged body geometry 
Submerged body volume 
Submerged body depth 

Floating buoy diameter 
Floating buoy draft 
Submerged body diameter 
Submerged body depth 
Submerged plate thickness 

PTO parameters Optimized Optimized Fixed values Optimized 
DoE method RSM RSM Taguchi RSM 
Optimal dimensions Selected from given values Optimized Selected from given values Optimized 
Viscus effect Unconsidered Unconsidered Considered Considered 
Validation – – – Yes  

Fig. 1. Interaction of the WEC and ocean waves.  Fig. 2. A simplified model of a 2B-PA WEC in the heave direction.  
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To convert Eqs.(2) and (3) from time to frequency domain, we can 
replace ẋ(t) and fe(t) by: 

ẋ(t)=Re
{
Ûeiωt

}
(4)  

fe(t)=Re
{
F̂eeiωt

}
(5)  

where i is the imaginary unit, Û and F̂ represent the amplitudes of the 
velocity and force in complex notation, respectively, and Re{ ⋅} denotes 
the real part of a complex quantity. Accordingly x(t) and ẍ(t) are given 
as Eqs. (6) and (7) respectively. 

x(t)=Re
{
− i
ω Ûeiωt

}

(6)  

ẍ(t)=Re
{
iωÛeiωt

}
(7) 

The matrix form of the equation of motion in the frequency domain 
can be written as: 
(

iωM+C −
i
ωK

)[
Û1 Û2

]T
=
[
F̂e1 F̂e2

]T
(8)  

in which M, C, and K are the matrices of mass, damping, and stiffness 
coefficient, respectively, defined as: 

M=

[
(m1 + A1) + r⋅mPTO 0
0 (m2 + A2) + (1 − r)mPTO

]

(9)  

C=

[
(B1 + bVis1 + CPTO) − CPTO
− CPTO (B2 + bVis2 + CPTO)

]

(10)  

K=

[
(KPTO + Ks1) − KPTO
− KPTO (KPTO + Ks2)

]

(11)  

where subscripts 1 and 2 refer to the parameters of the floating buoy and 
the submerged body, respectively. The fraction of PTO mass contrib-
uting to the floating buoy is represented by r. The added mass of each 
body, radiation damping, hydrostatic stiffness, and wave frequency are 
denoted by A, B, Ks, and ω, respectively, while bvis stands for the viscous 
damping. The complex mechanical impedance matrix Z(ω) reads 

Z(ω)[Û1 Û2]
T
=

[
Z1 + ZPTO − ZPTO
− ZPTO Z2 + ZPTO

][
Û1 Û2

]T
=

[
F̂e1 F̂e2

]T
(12)  

where 

Z1 =(B1 + bvis1)+ iω((m1 +A1)+ r ⋅mPTO −
Ks1

ω2

)

(13)  

Z2 =(B2 + bvis2)+ iω((m2 +A2)+ (1 − r)mPTO −
Ks2

ω2

)

(14)  

Z0 =Z1 + Z2 (15)  

and 

ZPTO =CPTO + iω
(

−
KPTO

ω2

)

(16) 

Drawing on Eq. (12), the relative velocity of the two bodies can be 
given as: 

Û rel = Û1 − Û2 =

F̂ e1Z2
(Z1+Z2)

− F̂ e2Z1
(Z1+Z2)

Z1Z2
(Z1+Z2)

+ ZPTO
(17) 

By defining the equivalent wave excitation force (F̂0) and the 
equivalent complex mechanical impedance (Zeq), the relative velocity of 
bodies, Eq. (17), can be rewritten as: 

Ûrel =
F̂0

Zeq + ZPTO
(18)  

in which: 

Zeq =
Z1Z2

Z0
(19)  

F̂0 =
F̂e1Z2 − F̂e2Z1

Z0
(20) 

Therefore, the time-averaged value of mechanical absorbed power, 
pu(t), can be determined by multiplying the PTO force by the relative 
velocity of the two bodies (Falnes, 1999): 

Pu ≡ pu(t) = fPTO(t)⋅urel(t)=
1
2
CPTO|Û rel|

2 (21)  

Pu =
1
2
CPTO

⃒
⃒
⃒
⃒
⃒
⃒
⃒

F̂0
(
CPTO + Re

{
Zeq

)
+ i

(

Im
{
Zeq

}
− KPTO

ω

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

2

(22) 

For a specific WEC geometry, the parameters of ZPTO, i.e. KPTO and 
CPTO, can be adjusted to achieve the maximum power. 

To extract the maximum time-averaged mechanical absorbed power, 
two approaches can be followed. The first approach aims to minimize 
the denominator of Eq. (22) by dismissing the imaginary part given in 
Eq. (23). This ensures that the exciting wave force and the relative ve-
locity of two bodies act in phase and results in the optimum stiffness of 
the PTO, Eq. (24). This approach is known as complex-conjugate control. 

Im
{
Zeq

}
−
KPTO

ω = 0 (23)  

KPTOopt =ωIm
{
Zeq

}
(24) 

If (at a certain wave frequency) a negative value is obtained for KPTO, 
its magnitude is considered to be zero. In this case, a suboptimal value is 
obtained for the power, since a negative spring coefficient is not prac-
tically meaningful: 

KPTOsubopt = 0 (25) 

The second approach, known as amplitude control, utilizes the partial 
derivative (Appendix A) to maximize the mechanical absorbed power as: 

∂Pu

∂CPTO
= 0 (26) 

Thus, the optimum damping of the PTO is achieved: 

CPTOopt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Re

{
Zeq

})2
+

(

Im
{
Zeq

}
−
KPTO

ω

)2
√

(27) 

The maximum time-averaged power can be captured by applying 
both control methods simultaneously. Thus, based on the value of the 
PTO stiffness, the optimum power is derived as (Falnes, 1999): 

Puopt =
|F̂0|

2

8Re
{
Zeq

} (28) 

For the suboptimal case, 

Pusubopt =
|F̂0|

2

4
(
Re

{
Zeq

}
+
⃒
⃒Zeq

⃒
⃒
) (29)  

3. Optimizing the WEC geometry using optimum PTO 
parameters 

The previous section demonstrated a major step in maximizing the 
absorbed power by optimizing the PTO parameters. We can also opti-
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mize the dimensions of the WEC to further increase the absorbed power. 
Using complex-conjugate and amplitude controls, the optimal values of 
the PTO parameters can be determined using Eqs. (24) and (27). To 
specify the dimensions, all the constraints should be taken into account, 
and the impact of each should be considered. There are five major 
dimensional parameters, shown in Fig. 3, which play important roles in 
defining the geometry of a new 2B-PAWEC: the floating buoy diameter 
(D1) and its weight, which is directly related to the draft (Hd), the sub-
merged body heave plate diameter (D2) and its thickness (t), and the 
height (depth) of the submerged body (H). 

The WEC is planned to be constructed and tested in a wave tank. 
Therefore, all physical constraints must also come into consideration. 
The dimensions of the WEC might be bounded by various factors, such as 
fabrication cost and capacity, operation conditions, etc. In the current 
study, one constraint arises from the dimensions of the available wave 
tank, i.e. its width and height, in which the WEC prototype is going to be 
tested. In order to minimize disturbances in the experimental results, the 
prototype should be small enough to minimize the effect of wave re-
flections from the walls and bottom of the wave tank. Thus, the diameter 
of the oscillating buoys needs to be at least five times smaller than the 
width of the wave tank (Chakrabarti, 1999; Payne et al., 2009). 

On the other hand, the diameter of the WEC should be large enough 
to guarantee a turbulence flow. This facilitates a ‘scale up’ of the results 
for industrial size WECs operating in the sea. 

The movement of each body may affect the hydrodynamic charac-
teristics of the other. To minimize this likely negative effect, the distance 
between the two bodies should be adequately large. On the other hand, 
to avoid reflections from the bottom surface of the wave tank, the sub-
merged body should be far enough from the bottom. This imposes a limit 
on the distance between the two bodies of the WEC. 

The draft of the floating buoy, i.e. the wet height of the buoy, and the 
diameter of the buoy determine the buoyancy force; this force should be 
balanced by the weight of the buoy. The weight of each buoy is limited 
by fabrication contraints and material density. Theoretically, there is no 
upper bound for the draft of the floating buoy and the thickness of the 
heave plate – so any practical range can be assumed. By taking all 
constraints and assumptions into account, the dimensional ranges of the 
five parameters are determined, Table 2. 

From among the infinite combinations of dimensional values for the 
WEC within the ranges provided in Table 2, the optimum values to 
maximize the extracted power of the WEC are chosen using DoE 

methods. The type of DoE used here is RSM: a statistical parametric 
method that provides an estimated relationship between several input 
variables and one or more response variables, helping to better under-
stand and optimize the response. This method (introduced in (Khuri and 
Mukhopadhyay, 2010)) is appropriate where the optimum operational 
conditions depend on various correlated inputs. 

The experimental designs for the RSM are provided by Box–Behnken 
Designs (BBD), allowing for a sequential study of the effect of the various 
factors of the design, during the study of one factor, while other factors 
are maintained at a constant level. For a system with five continuous 
parameters, BBD proposes 46 WEC models combining predetermined 
dimensions, see Appendix B. Every single one of the 46 generated WEC 
models is simulated in ANSYS-AQWA after its CAD model is built. The 
hydrodynamic coefficients of each model are calculated in ANSYS- 
AQWA. Having calculated the hydrodynamics coefficients, the 
maximum frequency-averaged absorbed power for each combination 
can be determined, for the frequency domain of 0.5–1 Hz, in MATLAB. 
The overall process of optimization is shown in Fig. 4. 

Every experiment includes calculating the normalized frequency- 
averaged power for a combination of five parameters. The average is 
taken over the wave frequency range of 0.5–1 Hz (the frequency step is 
0.1 Hz). In order to make the absorbed power independent of wave 
amplitude (ƞ), it is normalized to ƞ2. 

Once the simulation for each model is performed and the frequency- 
averaged absorbed power of each WEC is determined, RSM fits a para-
metric model (second-order polynomial) on the outcomes of the simu-
lation in order to calculate the normalized frequency-averaged power as 
a function of five unknown parameters: 

PNorm =
P
η2 = − 1418 + 3D1 + 3.23D2 + 0.65H − 13.2Hd − 0.99t

− 0.01074D2
1 − 0.007465D2

2 − 0.000624H2 + 0.062Hd
2

− 0.0056t2 + 0.01206D1D2 + 0.00311D1H − 0.0207D1Hd

+ 0.01412D1t − 0.00024D2H + 0.0185D2Hd − 0.01153D2t

− 0.0025H⋅Hd + 0.00008H⋅t + 0.0194Hd⋅t
(30) 

This model establishes a relationship between the average power 
absorbed by the WEC and its dimensions. To evaluate the model, several 
measures are to be checked. First, to determine how well the model fits 
the data, the percentage of variation in the response that is explained by 
the model is represented by R2. If the model fits well, R2 is close to 1. for 
the current model, R2 is 0.9926. R2 also shows that skipping parameters 
with a degree higher than 2 has little effect on the output. 

To determine the effect of each parameter on the output, the analysis 
of variance (ANOVA) (St and Wold, 1989) is used. The results, using 
Minitab (Ryan et al., 2012), are presented in Table 3, in which:  

− DF (degree of freedom) represents the number of parameters that 
appear in the equation; the model consists of 5 linear terms, 5 
quadratic terms, and 10 two-way interaction terms.  

− Adjusted sums of squares (Adj. SS) are measures of variation for 
different terms of the model, while adjusted mean squares (Adj. MS) 
measure how much variation a term or a model explains – assuming 
that all other terms are in the model, regardless of the order they 
were entered. Adj. SS and Adj. MS are used to calculate the P-value 

Fig. 3. 2B-PA WEC schematic.  

Table 2 
Dimensional ranges of WEC parameters.  

Parameter Min. (mm) Max. (mm) 

D1 500 600 
Hd 70 80 
H 1200 1400 
D2 600 800 
t 30 80  
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for a term and also to calculate the R2 statistic. Usually, when in 
interpreting a model, it is more common to use the P-values and the 
R2 statistic than the sums of squares.  

− The F-value is a statistical test used to determine whether each factor 
is associated with the response or not (St and Wold, 1989). The larger 
the F-value, the more the response depends on that parameter. A 
sufficiently large F-value indicates that the term or model is signifi-
cant. The F-value is also used to calculate the P-value.  

− The P-value is a probability measure used to make a decision about 
the statistical significance of the terms and model. If the P-value is 
less than or equal to the significance level, e.g. 0.05 (Neter et al., 
1996), then the effect of the term is statistically significant 

To depict the data provided in Table 3, a Pareto chart is used for the 
standardized values of the parameters, Fig. 5. For the calculation pro-
cedure of the standardized values, the reader is referred to (Wilkinson, 
2006). The red dashed line shows the standard value corresponding to 
the P-value of 0.05. As mentioned, any term with a P-value larger than 
0.05 does not have a major impact on the output power – and can thus be 

ignored. 
Fig. 6 illustrates how the variation of the output power depends on 

the variation of each of the input parameters at the peak of the RSM 
fitted surface. It shows that increasing parameters such as floating buoy 
diameter and the depth of the submerged body has a positive effect on 
the power. On the other hand, as the figure shows, increasing the draft 
has a negative impact on the absorbed power. In other words, the lower 
the weight of the floating body, the greater the absorbed power. How-
ever, the lower bound of the weight of the buoy is limited by fabrication 
constraints. 

As the figure indicates, increasing the diameter of the submerged 
body initially increases the output power; however, after passing a 
certain value, the absorbed power decreases with a further increase in 
diameter. Therefore, there is an optimum value for the submerged body 
diameter in the defined range, within the selected wave frequency 
range. 

Fig. 7 depicts the optimum value of each dimension, obtained from 
the current RSM, within the selected range of wave frequency. 
Substituting the optimum dimensions into Eq. (30), the maximum 
frequency-averaged absorbed power can be calculated to be 1453 W/m2 

. It should be noted that the power is normalized with respect to the 

Fig. 4. Optimization process.  

Table 3 
ANOVA data for the model. DF: degree of freedom; Adj. SS: adjusted sum of 
squares; Adj. MS: adjusted mean squares.  

Source DF Adj. SS Adj. MS F-value P-value 

Model 20 449235 22462 166.92 0.000 
Linear 5 371359 74272 551.94 0.000 
D1 1 334933 334933 2489.01 0.000 
D2 1 3336 3336 24.79 0.000 
H 1 23493 23493 174.59 0.000 
Hd 1 8327 8327 61.88 0.000 
t 1 1271 1271 9.44 0.005 
Square 5 57290 11458 85.15 0.000 
D2

1 1 6296 6296 46.79 0.000 
D2

2 1 48590 48590 361.09 0.000 
H2 1 340 340 2.52 0.125 
Hd

2 1 21 21 0.16 0.696 
t2 1 107 107 0.79 0.382 
Two-way interaction 10 20586 2059 15.30 0.000 
D1D2 1 14549 14549 108.12 0.000 
D1H 1 967 967 7.19 0.013 
D1Hd 1 107 107 0.80 0.381 
D1t 1 1246 1246 9.26 0.005 
D2H 1 23 23 0.17 0.683 
D2Hd 1 340 340 2.53 0.124 
D2t 1 3324 3324 24.70 0.000 
H⋅ Hd 1 7 7 0.05 0.828 
H⋅ t 1 0 0 0.00 0.973 
Hd⋅ t 1 24 24 0.17 0.679  

Fig. 5. Pareto chart for the normalized absorbed power. A: the floating buoy 
diameter (D1); B: the submerged body diameter (D2); C: the distance between 
floating and submerged bodies (H); D: the draft (Hd); E: the submerged body 
thickness (t). 
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wave amplitude. The estimated maximum normalized frequency- 
averaged power as well as the normalized frequency-averaged power 
of all 46 cases are shown in Fig. 8. 

As it turned out, the diameters of floating and submerged buoys are 

important parameters that affect the output power. Fig. 9 shows how the 
power changes with respect to the diameter of two bodies by keeping the 
other three parameters constant in the optimal amount. Each contour 
represents 100 units of power change. By comparing the ratio of the 
height to the width of each contour, the effect of the floating buoy 
diameter on the absorbed power is determined with respect to the 
diameter of the submerged body. For example, by selecting a floating 
buoy diameter of 600 mm, for any diameter of the submerged body in 
the range of 650–800 mm, the power is always above 1400 W/m2. 

Since the maximum normalized frequency-averaged power is ob-
tained by finding the peak of the RSM fitted surface on the normalized 
frequency-averaged powers of the selected set of input parameters, it is 
only an estimate of the maximum power. Dimensions corresponding to 
the estimated maximum power obtained by RSM are now used in 
ANSYS-AQWA to calculate the hydrodynamic coefficients. Then, Eq. 
(29) can be used to determine the exact averaged optimum power. To 
show how the BEM is used to calculate the normalized averaged power 
during the optimization process, the details of the calculations of the 
hydrodynamic coefficients for the optimum WEC dimensions are given 
in detail in Section 4. 

4. Hydrodynamic coefficients and the output power 

ANSYS-AQWA is used to calculate the hydrodynamics coefficients, 
including the added mass coefficients A1 and A2, damping coefficients 
B1 and B2, and excitation forces F̂e1 and F̂e2 of the floating buoy and 
submerged body, respectively. These coefficients appear in Eq. (12). 
Fig. 10 shows the mesh used to simulate the optimized WEC dimensions 
by ANSYS-AQWA. 

The resulting added mass obtained for the floating and submerged 
bodies of the WEC, for the frequency range of 0.2–1 Hz, is shown in 
Fig. 11. Note that only the results obtained for the frequency range of 
0.5-1 Hz will be used for optimization purposes. As shown in this figure, 
the added mass of the submerged body is at least three times larger than 
that of the floating body, within the specified wave frequency range. 
Also, as expected, the added mass of the submerged body is a weak 
function of the wave frequency, while the added mass of the floating 
buoy changes noticeably with the wave frequency, especially within the 
frequency range 0.5–1 Hz. 

Fig. 12 represents the results obtained for the radiation damping 
coefficients of the floating and submerged bodies. As shown, the radi-
ation damping coefficient of the floating body is much larger than that of 
the submerged body, which is due to its large surface contact with the 
free water. Since ANSYS-AQWA essentially deals with the inviscid flow, 
it does not consider the effect of viscosity or frictional drag when 
calculating the damping coefficient. This does not have any significant 
effect on the damping coefficient of the floating buoy (Beatty et al., 
2015); however, it affects the resulting damping coefficient of the sub-
merged body. To consider the effect of viscosity, in the current study, the 
correlation suggested by (Liang and Zuo, 2017) is used for the sub-
merged body: 

Fig. 6. The impact of different parameters on the averaged absorbed power.  

Fig. 7. Optimal dimensions of the WEC.  

Fig. 8. The normalized frequency-absorbed power for DoE cases. The dashed 
line indicates the frequency-averaged absorbed power for the optimal model. 

S. Rezaei et al.                                                                                                                                                                                                                                  



Ocean Engineering 261 (2022) 112186

8

ζ2 =
bvis2

2m1ωf
(31)  

where ζ2 is the dimensionless viscous damping of the submerged body, 
bvis2 is the viscous damping coefficient of the submerged body, m1 is the 
mass of the floating buoy, and ωf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ks1/(m1 + A1)

√
is the natural fre-

quency of the floating buoy in still water. 
According to experimental results (Beatty et al., 2015), ζ2 is in the 

range of 0.4–0.8 for the submerged body of Powerbuoy. In this research, 
ζ2 is taken to be 0.6 to estimate the viscous damping coefficient of the 
submerged body. 

Fig. 13 shows the resulting wave excitation force acting on the 
floating and submerged bodies, for the frequency range 0.2–1 Hz. As 
expected, the force acting on the floating buoy is much larger than that 
of the submerged body. This is due to the exponential attenuation of the 
wave effect with the depth of water. The figure also shows that the 
floating body excitation force decreases as the wave frequency increases. 
This is in agreement with the Haskind’s equation (Falnes and 

Fig. 9. Contour plot of normalized frequency-averaged absorbed power vs. the diameter of floating buoy and submerged body.  

Fig. 10. The model used in BEM analyses.  

Fig. 11. Added mass coefficients of floating buoy and submerged body.  
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Kurniawan, 2020): 

Fe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ρg3Bi

ω3

√

(32) 

Once the hydrodynamic coefficients are calculated, Eq. (29) is used 
to determine the optimum time-averaged absorbed power. Fig. 14 shows 
the resulting normalized time-averaged absorbed power, as a function of 
the wave frequency, for the optimum dimensions of the WEC. As the 
figure shows, the maximum time-averaged absorbed power, 2000 W/

m2 , occurs at the frequency 0.55 Hz. 
The operating frequency range of the WEC is within 0.5–1 Hz. To 

make it possible to compare the output powers of the WECs with various 
dimensions, it is assumed that during a specific period of time, each 
wave frequency has the same probability of occurring. Therefore, one 
can take the frequency-averaged of the power over the wave frequency 
range (0.5–1) Hz and compare the result with the corresponding values 
of other WECs; or one could multiply the obtained power by the prob-
ability density function of the wave frequency occurrence. The results of 
the numerical methods show that the value of the frequency-averaged 
absorbed power of the optimal WEC, in the selected frequency range, 

is 1486 W/m2. This is comparable with 1453 W/m2, from the RSM 
obtained in Section 3. 

The incident wave power (power flux) which is normalized to the 
wave amplitude, η2, is expressed as (Falnes and Kurniawan, 2020): 

Pw,Norm. =
ρg2

8π T
(

1+
2kd

sinh(2kd)

)

tanh(kd) × D (33)  

where ρ, is the density of water and g is gravity acceleration. T, k, and d 
are the wave period, wave number and depth of water, respectively. D is 
the incident wave width. The mechanical efficiency of the WEC can be 
assessed as: 

effm =
PNorm

PwN
(34) 

According to RSM results, the diameter of the floating body has the 
most important effect on the averaged mechanical absorbed power. On 
the other hand, the excitation force of the floating body is several times 
greater than the excitation force of the submerged body, Fig. 14. 
Therefore in Eq. (33), D is considered as the diameter of the floating 
body. By averaging the normalized incident wave power upon the fre-
quency range of 0.5–1 Hz, the mechanical efficiency of the optimized 
2B-PA is calculated to be 47.5%. 

5. Validation 

Once the optimal WEC dimensions are specified, the model is 
fabricated and tested in a wave tank. Fig. 15 shows the model made with 
the dimensions obtained in this paper as illustrated in Fig. 7. Various 
experiments have been carried out to calculate the hydrodynamic co-
efficients of the WEC model and the absorbed power, which are dis-
cussed in details in another paper prepared by the current authors and 
will appear soon (Rahimi et al. Unpublished results). All the tests are 
performed under the regular waves. The absorbed power measured by 
the experiment is shown in solid black line in Fig. 16, and the black 
dashed line depicts the average power taken in the frequency range of 
0.5–1 Hz. The blue solid and dashed lines shows the absorbed power 
calculated based on the hydrodynamic coefficients obtained by the 
ANSYS AQWA and their frequency-averaged value, respectively. The 
frequency-averaged absorbed power obtained by the RSM is also shown 
in dashed red line. As discussed in Section 4, the value that RSM pro-
poses for optimal absorbed power is consistent with the ANSYS AQWA 
results. It can be seen from Fig. 16 that there is a difference between the 
experiment and RSM results. The discrepancy in the results is due to 

Fig. 12. Radiation damping coefficients of floating buoy and submerged body.  

Fig. 13. The normalized excitation force amplitude acting on the floating buoy 
and submerged body. 

Fig. 14. The normalized averaged absorbed power.  
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viscous damping coefficients. In the optimization process, Eq. (31) is 
used to estimate the viscous damping, while in the experiment the exact 
value of the viscosity is applied. 

6. Conclusions 

The focus of this paper is to optimize the dimensions of a 2B-PA WEC 
in the laboratory scale, in order to absorb the maximum average me-
chanical power in a specified frequency range. The BBD is used to select 
46 cases within the allowable range of dimensions. The average 
normalized power is calculated at each optimum control condition. 
ANSYS-AQWA is employed to calculate the hydrodynamic coefficients 
necessary to calculate the average normalized power of each setting of 
WEC dimensions. RSM is employed to build a second-order polynomial 
parametric model that fits a surface on the output powers of 46 WECs, 
with various dimensions. The optimum normalized average power is 

then estimated to be 1453 W/m2 at the peak of the fitted surface. The 
exact calculation of the frequency range normalized averaged power for 
optimum dimensions gives a power of 1486 W/m2, which fits well with 
the RSM results. The consistency of the results of the model proposed by 
RSM and the simulation for the optimal WEC confirms the accuracy of 
the RSM results. 

Optimization results showed that, in the specified range of wave 
frequency, increasing the diameter of the floating buoy has the greatest 
impact on increasing the resulting absorbed energy, i.e. the output 
power. The second most effective parameter with regard to the absorbed 
energy is the diameter of the submerged body. As the diameter of the 
submerged body increases, the absorbed energy increases to its 
maximum value – however followed by a decrease in the energy if the 
diameter is increased even further. The depth of the submerged body, 
draft, and the thickness of the lower plate are next in the line of 
importance in increasing energy absorption. The results of ANOVA 
reveal that the five main variables selected have considerable effect in 
determining the output power, and none of them can be ignored. The 
results show that the optimized WEC is able to harvest 47.5% of incident 
wave power. The report on the fabrication and laboratory testing of an 
optimized WEC will be published shortly in upcoming papers. 
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Appendix A 

The process of finding the optimal and suboptimal PTO damping coefficients using the partial derivative method (Eqs. (26) and (27)) is as follows: 

Pu =
1
2
CPTO

⃒
⃒
⃒
⃒
⃒
⃒
⃒

F̂0
(
CPTO + Re

{
Zeq

})
+ i

(

Im
{

Zeq
}
− KPTO

ω

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒

2

(A.1)  

Pu =
1
2
CPTO

|F̂0|
2

α2 + β2 (A.2)  

where. α = CPTO + Re{Zeq}

and β = Im{Zeq} −
KPTO

ω 

∂Pu

∂CPTO
=

1
2

|F̂0|
2

α2 + β2

[

1 −
2αCPTO

α2 + β2

]

= 0 (A.3) 

Eq. (A.3) is fulfilled when 2αCPTO = α2 + β2. Therefore, the optimal PTO damping coefficient can be given as: 

CPTOopt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Re

{
Zeq

})2
+

(

Im
{

Zeq
}
−

KPTO

ω

)2
√

(A.4) 

For the optimal values of KPTO(KPTO > 0): 

CPTOopt =Re
{

Zeq
}

(A.5) 

And for the suboptimal values of KPTO(KPTO = 0): 

CPTOsubopt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Re

{
Zeq

})2
+
(
Im

{
Zeq

})2
√

=
⃒
⃒Zeq

⃒
⃒ (A.6)  

Appendix B  

Table B.1 
Experiments suggested based on Box-Behnken design  

No. of experiment D1 [mm] Hd [mm] D2 [mm] H [mm] t [mm] Normalize averaged power (W/m2) 

1 550 75 600 1400 55 1.23E+03 
2 550 75 700 1200 30 1.22E+03 
3 550 80 600 1300 55 1.16E+03 
4 550 70 600 1300 55 1.22E+03 
5 550 80 700 1200 55 1.19E+03 
6 550 70 800 1300 55 1.17E+03 
7 550 75 600 1200 55 1.15E+03 
8 550 75 700 1400 80 1.28E+03 
9 600 75 700 1200 55 1.32E+03 
10 600 75 700 1300 80 1.37E+03 
11 550 75 600 1300 30 1.16E+03 
12 500 75 700 1300 30 1.10E+03 
13 600 75 700 1400 55 1.42E+03 
14 550 75 800 1300 80 1.13E+03 
15 550 75 700 1400 30 1.30E+03 
16 550 75 800 1300 30 1.19E+03 
17 600 70 700 1300 55 1.41E+03 
18 550 75 700 1300 55 1.25E+03 
19 550 75 700 1300 55 1.25E+03 
20 550 70 700 1200 55 1.23E+03 
21 500 75 800 1300 55 9.65E+02 
22 500 75 600 1300 55 1.10E+03 
23 550 75 800 1200 55 1.12E+03 
24 550 75 600 1300 80 1.21E+03 
25 550 80 700 1400 55 1.27E+03 
26 500 75 700 1300 80 1.05E+03 
27 550 80 700 1300 80 1.22E+03 
28 550 80 700 1300 30 1.24E+03 
29 600 75 600 1300 55 1.23E+03 

(continued on next page) 
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Table B.1 (continued ) 

No. of experiment D1 [mm] Hd [mm] D2 [mm] H [mm] t [mm] Normalize averaged power (W/m2) 

30 550 70 700 1400 55 1.32E+03 
31 550 75 700 1300 55 1.25E+03 
32 500 80 700 1300 55 1.06E+03 
33 550 75 800 1400 55 1.19E+03 
34 550 80 800 1300 55 1.14E+03 
35 550 75 700 1200 80 1.19E+03 
36 550 75 700 1300 55 1.25E+03 
37 550 75 700 1300 55 1.25E+03 
38 600 80 700 1300 55 1.35E+03 
39 550 70 700 1300 80 1.26E+03 
40 500 70 700 1300 55 1.09E+03 
41 500 75 700 1200 55 1.04E+03 
42 600 75 800 1300 55 1.34E+03 
43 500 75 700 1400 55 1.08E+03 
44 550 75 700 1300 55 1.25E+03 
45 600 75 700 1300 30 1.36E+03 
46 550 70 700 1300 30 1.29E+03  
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