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SUMMARY

This paper reports numerical simulation of the flow past a heated/cooled sphere. A Galerkin finite
element method is used to solve the 3D incompressible Boussinesq equations in primitive variable form.
Numerical simulations of flow around the sphere for a range of Grashof numbers and moderate
Reynolds numbers, were conducted. The drag coefficient for adiabatic flow shows good agreement with
standard correlations over the range of the Reynolds numbers investigated. It is shown that the drag can
vary considerably with heating of the sphere and that computational fluid dynamics methods can be used
to derive constitutive laws for macroscopic momentum and heat exchange in multiphase flow. © 1998
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow structure around a sphere has been the subject of extensive research in both
experimental and numerical fluid dynamics. The results of flow simulation have a variety of
applications in industry, from chemical engineering processes involving the passage of a liquid
or gas between solid spheres, to fluidized beds and the field of aerosols.

Moller [1] performed experiments with spheres for the Reynolds number range of 1035
Re5104, using flow visualization. He reported two different Strouhal numbers in this range of
Reynolds number; a high mode and a low mode. Cometta [2] repeated the same experiments,
but used a hot wire technique for Reynolds numbers in the range 1035Re54×104. He
reported the same high and low modes of vortex shedding. Kim and Durbin [3] also carried
out an experiment in the Reynolds number range of 5005Re56×104. They stated that the
two modes of vortex shedding observed are associated with the small scale instability of the
separating shear layer and with the large scale instability of the wake. Sakamotto and Hamu
[4] experimentally investigated vortex shedding from spheres with Reynolds numbers from 300
to 4×104. They demonstrated that at Reynolds number ranging from 8×102 to 1.5×104, the
higher and lower frequency modes of Strouhal number coexist. They also reported that when
the Reynolds number exceeds 300 the first instability of the flow starts and hairpin shaped
vortices begin to be shed. This pattern of vortex shedding continues up to Reynolds numbers
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of :800; thereafter hairpin shaped vortices change from laminar to turbulent vortices with
alternate fluctuations.

The structure of the flow around a sphere has also been investigated numerically by a
number of workers. Rimon and Cheng [5] studied the flow around a sphere for 15Re51000.
They used a finite difference method with symmetric axis properties to solve the Navier–
Stokes equations. Dennis and Walker [6] also solved the Navier–Stokes equations numerically
for axisymmetric flow past a sphere. Aliabadi and Tezduyar [7] solved the 3D equations using
the finite element method and parallel processors. They reported that the axisymmetric
structure of the wake breaks down at Re=400 and, after passing the transition phase, a
periodic solution appears. In the transition phase, vortex shedding appears in the symmetry
plane. Wen-Zhong Shen et al. [8] used a finite difference method to solve the Navier–Stokes
equations in velocity–vorticity form. They studied the structure of flow around a sphere for
Reynolds numbers up to 500. For Re=40 and 100, the flow structure was reported to be in
a steady state and axisymmetric. A secondary vortex was observed for Re=500.

The flow structure around a sphere in the presence of heat transfer, which has not been
addressed in the previous literature, is investigated numerically in this paper. The primitive
variable form of the Navier–Stokes equations in 3D, together with the energy and continuity
equations, have been solved. A Galerkin finite element method has been used to solve these

Figure 1. (a) Schematic of the computational domain; (b) mesh structure on the surface of the sphere; (c) the mesh
structure comprises seven submeshes, each having a structured connectivity; (d) boundary conditions in the x–z plane.

Similar boundary conditions are used in the x–y plane.
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Figure 2. Comparison between the numerically calculated drag coefficients at various Reynolds numbers and
experimental data (the continuous line) from Reference [11].

equations. The next section describes the governing equations and the numerical method used
to solve them. In Section 3, the numerical results are presented, followed by discussions about
the results. Finally, conclusions are drawn in Section 4.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

Assuming a viscous and incompressible flow, and using a Boussinesq approximation, the
Navier–Stokes, energy and continuity equations can be written as
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where V is the velocity vector, with u, 6 and w components in the x-, y- and z-directions
respectively, p is the pressure and T is the temperature. Re is the Reynolds number, Gr is the
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Grashof number, Pe is the Peclet number, Ri is the Richardson number, and they are defined
as

Re=
U�d

n
, Gr=

gbd3

n2 (Ts−Tf), Pe=
U�d

a
, Ri=

Gr
Re2,

where U� is the characteristic velocity, the inlet velocity in this case, d is the characteristic
length, denoting the diameter of the sphere, n is the kinematic viscosity, b is the thermal
expansion coefficient, g is the gravity acceleration, a is the thermal diffusivity and Ts−Tf is the
temperature difference between a constant sphere surface temperature Ts and a constant inflow
temperature Tf.

The non-dimensional inflow temperature Tf and the sphere surface temperature Ts are
specified as Tf=0 and Ts=1. A positive Richardson number represents a heated sphere
surface in which the buoyancy acts in the opposing direction to the gravitational force. In the
same way, a negative Richardson number indicates a cooled sphere surface in which buoyancy
and gravity forces have the same directions.

Using the Galerkin discretization method, the discretized Navier–Stokes equations can be
written as

M. �Vn+1−Vn

Dt
�

= −KVn+u−NVn+u+Cpn+1, (6)

where M. is mass matrix, K and N are matrices associated with diffusion and advection terms,
and n and u denote the discretized time level at which velocity and pressure are calculated. A

Figure 3. Pressure distribution at t=93.4 for Re=100 and 400 on the x–z plane for y=0. At Re=400 the symmetry
is broken.
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Figure 4. Velocity vectors without heat transfer at (a) Re=100, and (b) Re=400, at time t=93.4. At Re=400, the
symmetry of the flow breaks down.

Crank–Nicolson time discretization method, u=1/2, is used with the Galerkin finite element,
because this minimizes the dissipative effects on the solution.

It is assumed that Vn+1 and pn+1 satisfy both this equation as well as the continuity
equation. If V* and p� are the velocity and pressure fields that satisfy this equation, but not
necessarily the continuity equation, then

M. �V�
n+1−Vn

Dt
�

= −KVn+u−NVn+u+Cp�
n+1. (7)

Subtracting Equation (7) from Equation (6) gives

M. �Vn+1−V�
n+1

Dt
�

=C(pn+1−p�
n+1). (8)

Pre-multiplying this equation by CTML
−1 gives
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Introducing a modified continuity equation as CTML
−1M. Vn+1=0 in the above equation,

results in
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Figure 5. Pressure distribution at various y sections for the adiabatic case at Re=400 for time t=93.4.

−CTML
−1M. V�

n+1

Dt
=CTML

−1CDp, (10)

where Dp= (pn+1−p�
n+1).

A projection method was used to solve the Navier–Stokes equations. In this method,
initializing with p�

n+1=p�
n , Equation (7) is solved for V�

n+1. Then V�
n+1 is used in Equation

(10) to solve for the pressure. Finally, Equation (8) is solved for Vn+1. The new pressure can
be calculated by adding Dp to the previous p�, i.e.

p�(new)=p�(old)+Dp, (11)

Figure 6. Variation of the force exerted on the sphere in the direction of flow, x-direction.
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Figure 7. Variation of the forces exerted on the sphere in the y- and z-directions for the adiabatic case with Re=400.

and the process is repeated until convergence. Often, however, only a single iteration is used
per time step, e.g. Gresho et al. [9]. In solving Equation (10), if instead of both ML

−1 and M. ,
a distributed mass matrix M is used, then the method is called the consistent mass matrix
method. This method is accurate but expensive, because in this case the inverse mass matrix
may be dense, making CTM−1C dense and difficult to invert.

If a lumped mass matrix, ML, is used for M. , then the method is termed the lumped mass
matrix method. Calculating ML

−1 is easy and cheap, but the accuracy will be reduced.
If a distributed mass matrix is used for M. , and a lumped mass matrix used in Equation (10),

the method is termed a mixed mass method. This method is more accurate than the lumped
mass matrix method and cheaper than the consistent mass matrix method. The mixed mass
method of Gresho and Chan [9] alters the pressure which detracts from the accuracy of the
computed pressure and drag around the sphere. The discretized pressure term in this approach
is altered to ML

−1MCCP. Due to problems in calculating the drag using the mixed mass
method, the lumped mass matrix method was used.

The drag coefficient can be calculated according to the equation
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in which A is the projection area of the sphere and
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Similar expressions can be used for forces in the Y- and Z-directions. A variety of drag
correlations for the flow past a sphere exist; the present results are compared with the
correlation [10]

CD=
24

Rep

(1+0.1Rep
0.75).
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3. NUMERICAL RESULTS AND DISCUSIONS

The grid structure on the surface of the sphere and the computational domain used in this
study are illustrated in Figure 1. Figure 1(c) shows that the structure of the mesh consists of
seven submeshes, each having a structured connectivity. Element sizes around the sphere
decrease exponentially towards the sphere. Boundary conditions used in this simulation are
shown in Figure 1(d).

First, the accuracy of the code for the adiabatic case at Reynolds numbers between 2 and
500 are checked. The drag coefficients are time averaged for the larger Reynolds numbers. In
Figure 2, the calculated drag coefficients and the experimental data from Reference [10] are
compared. Over this range of Reynolds numbers, the calculated drag coefficients show good
agreement with the experimental data. Various grid sizes are used for the simulations. At
lower Reynolds numbers (B400), 58 000 and at higher Reynolds numbers (]400), about
160 000 hexahedral elements are used. All the elements have tri-linear variations of velocity
and constant pressure across each element. A dimensionless time step of 0.05 is used.

Pressure distributions for the adiabatic case show that, at low Reynolds numbers, the flow
is axisymmetric and at a Reynolds numbers :400, the symmetry is broken. Figure 3 shows
the pressure distribution on the x–z plane through the centre of the sphere for Re=100 and
400. The velocity vectors for these cases are shown in Figure 4. As can be seen from these
figures, the velocity vectors and pressure distribution are not symmetric for Re=400. The
pressure distribution at various y sections is shown in Figure 5. Variation of the force
exerted on the sphere in the direction of the flow, obtained by Equation (13), is shown in
Figure 6. The lift forces, forces in the y- and z-directions resulting from asymmetry of the
flow, are also shown in Figure 7. The calculated drag history is consistent with the results of
Reference [7].

Figure 8. Variation of the drag coefficient CD as a function of Richardson number for Re=100 and 400.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 903–915 (1998)
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Figure 9. Pressure coefficient CP, defined as Cp=P−Pu=0/(1/2rU�
2 ) for various Richardson numbers at Re=100.

Upon increasing the Richardson number, the pressure drop between upstream and downstream of the flow increases.
By decreasing the Richardson number from −0.5 to −1.5, the separation points, indicated by *, move upstream.

Numerical simulation of a cooled/heated sphere started at a Reynolds number of 100. The
Grashof number was varied between −15 000 and 15 000, corresponding to Richardson
numbers of −1.5 to 1.5. A Peclet number of 70.6 was used for the simulations (corresponding
to Pr=0.706 for air at T=27°C, a velocity of 0.17 m s−1, DT=130°C and a sphere with
diameter of 1 cm).

Figure 8 shows the variation of drag coefficients as a function of Richardson number. The
simulations show that, in this range of Richardson number and at a Reynolds number
Re=100, increasing the Richardson number increases the drag coefficient. The reason for this
behaviour is that, upon increasing the Richardson number from Ri=0.0 to 1.5 and hence
increasing the buoyancy force exerted from the cold flow towards the hot sphere, the velocity
downstream and next to the surface of the sphere increases. Therefore, the pressure decreases
(Bernoulli equation). As a result, the pressure difference between the forward portion of the
sphere and behind the sphere increases, as shown in Figure 9. By increasing this pressure
difference, which is the main contributor to drag (drag due to pressure is called form drag), the
drag coefficient increases. In contrast, upon decreasing the Richardson number from 0.0 to
−1, the pressure difference between the side facing the flow and the opposite side of the sphere
decreases, therefore the drag coefficient decreases. Further decreases in the Richardson
number, from −1 to −1.5, do not decrease the pressure drop appreciably, therefore the drag
coefficient is slightly increased. Impulsive initializing of the simulation results in a high
pressure drop and a large drag force; therefore the main part of the drag, at the beginning of
the simulation, is due to form drag.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 903–915 (1998)
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In the cooled sphere case, upon decreasing the Richardson number from 0.0 to −1.5, the
buoyancy force exerted from the sphere side towards the hot flow causes the flow to separate.
In this case, the flow takes a long time to achieve a steady state. For example at Ri= −1.5,
achieving a steady state takes 80 dimensionless time units, d/U�, while for Ri=1.5 the system
becomes steady after only 12 time units. The temperature contours for Ri= −1.5 and +1.5
are shown in Figure 10. The corresponding velocity vectors for these cases are shown in Figure
11. As shown in Figure 11, upon decreasing the Richardson number from Ri=1.5 to −1.5,
the flow is separated at a u value of :85° and the direction of the flow downstream of the
sphere is reversed, causing a more uniform pressure distribution (Figure 9), and reducing the
drag coefficient. Convergence tests carried out for the simulations showed that the separation
points are not sensitive to the meshes used for the calculations.

Heat transfer was also calculated at various Richardson numbers. The following relation
was used to calculate the heat transfer:

Q=
&

G
k
(T
(n

dG,

where Q is the heat transfer, k is the thermal conductivity and n is the unit vector normal to
the surface G of the sphere. Figure 12 shows the variation of heat transfer, normalized with
respect to the heat transfer at Ri=0.0 and Re=100, as a function of Richardson number. The
non-dimensionalized heat transfer at Ri=0.0 and Re=100 is 0.484×10−4. This figure shows

Figure 10. Temperature contours for (a) Ri= −1.5, and (b) Ri= +1.5 at Re=100 for time t=91.
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Figure 11. Velocity vectors for (a) Ri= −1.5, and (b) Ri= +1.5 at Re=100 and t=91. At Ri= −1.5 the direction
of the flow in the downstream of the sphere is reversed.

that by introducing the buoyancy force, Ri"0, the heat transfer increases. The same
calculation is repeated for Re=400 and the Richardson number varied between −1.5 and 1.5.
As Figure 8 shows, for this Reynolds number, the drag coefficient increases as the Richardson
number increases from 0 to 1.5. The simulations showed that by decreasing the Richardson
number from 0 to −1.5, the separation points on the sphere move upstream. At a certain
Richardson number (:Ri=0 for Re=400) further reduction of the Richardson number does
not decrease the drag coefficient. Since the separation on the sphere occurs more upstream at
Ri= −1.5 than at Ri= −1 the resulting flow in the former case sees the sphere as a ‘bluffer’
object than in the latter case, causing the drag coefficient to increase. This situation can be seen
in the velocity vectors in Figure 13.

The upstream movement of the separation point, for decreasing the Richardson number, is
much reduced if a Reynolds number of 25 is used instead of 400. Therefore, decreasing the
Richardson number from 1.5 to −1.5 decreases the drag coefficient continuously. The data
shown in Figures 8 and 12 can be used to establish the constitutive relations for many
non-adiabatic multiphase modelling applications.

Applying a periodic boundary condition in order to model a uniform distribution of spheres
will be the subject of future study. A further step is to allow spheres to move freely, which has
already been performed for 2D simulation [11].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 903–915 (1998)
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Figure 12. Variation of heat transfer as a function of the Richardson number at various Reynolds numbers. The heat
transfer is normalized with respect to heat transfer at Ri=0.0 and Re=100. The non-dimensionalized heat transfer

at Ri=0.0 and Re=100 is 0.484×10−4.

4. CONCLUSIONS

The flow structure around a heated/cooled sphere has been simulated using a three-dimen-
sional finite element method. A variety of applications in industry, such as fluidized beds and
chemical processes involving the passage of a fluid between solid spheres in the presence of
heat transfer, can be treated with this modelling approach.

Drag coefficients calculated from the simulation for the unheated sphere showed good
agreement with the correlation presented in [10]. The results showed that at Re=400,
symmetry of the flow is broken. A set of calculations has been carried out for three different

Figure 13. Velocity vectors for (a) Ri= −1.5, and (b) Ri= −1 at Re=400. As the Richardson number decreases
from −1 to −1.5 the separation point moves upstream.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 903–915 (1998)
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Reynolds numbers, i.e. Re=25, 100 and 400. The Richardson number was varied between
−1.5 and 1.5. In all cases, as the Richardson number increased from 0 to a positive number,
the pressure difference across the sphere increased, causing the drag coefficient to increase. For
example, for Re=100, as the Richardson number varied in the range of 0–1.5, the simulation
showed an increase of :70% in the drag coefficient. The simulation also showed that the
separation points move upstream when the Richardson number decreases. For low Reynolds
numbers, e.g. Re=25, on reducing the Richardson number from 0 to −1.5, the pressure
difference decreases and therefore the drag coefficient decreases. For higher Reynolds num-
bers, however, e.g. Re=400, the effect of movement of the separation points becomes more
pronounced upon decreasing the Richardson number from 0 to −1.5, causing the ‘shape’ of
the object as seen by the flow to change and the drag coefficient to increase.
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